```
Exam Principles of Measurement Systems (PoMS); WBPH029-05
Semester Ib (2022/2023)
23 January 2023 8:30-10:30 ( +20 min , if applicable)
```

- This is a closed book exam, but you are allowed to use two A4 pages (one A4 sheet) of your own, prepared m advance, hand-written notes For calculations, a basic (non-graphical) calculator is allowed to be used
- Do not use a pencil to write down your answers and calculations! Exams written down with a pencil will not be accepted! Always use a pen!
- This exam contains 9 pages (mcluding this cover page) and 4 questions
- The total amount of points is 90
- Always motivate your answers, clearly explain any assumptions
- Round numerical answeis to the correct amount of digits Show umit calculations
- Suspected fiaud will be reported to the Board of Examiners

1 (21 pomnts) The following are short questions about the material of the course Select appropiate answers to the questions Multiple answers are possible
1.1 (1 point) The goal of repetztion is the following.
a. To compare measured data with a data set performed in a different laboratory
b To be competitive worldwide
c To double check the estimated value of a measure variable
d To improve the estimated value of a measured variable
1.2 (1 pount) Which statement about static or dynamic calıbration is not correct?
a A varıable of interest is static in a static calibiation
b A variable of menterest is dynamic in a dynamic calibration
c Input values in static calibration depend on time and space
d Input values in dynamic calibiation depend on time and space
1.3 (1 point) Accuracy refers to
a The closeness of agreement between the expected measured error and true error value
b The closeness of agreement between the measured value and the true value
c. The closeness of agreement between the associated uncertanties and the error value
d None of them
1.4 (1 point) To calculate the overall instıument uncertainty all partial and identified instrument's uncertainties need to be considered. Indicate the correct step(s).
a They should be simply added
b. They should be added and squared
c A square loot of each partial uncertainty should be taken and then all should be added and squared
d They should be squared, added and a square root of all partial uncertamties should be taken
1.5 (2 points) For which type of a signal does the magmitude remain constant between samples?
a. Analog signal
b Discrete time signal
c Digital signal
d. All of them.
1.6 (2 points) Which characteristics apply to the nondeterministıc signal?
a It has no recognizable pattem of repetition
b It is random in nature
c It can be predicted before it occuis
d It cannot be descrıbed by statıstical chaiacterıstıcs
1.7 (1 point) A frequency signal allows one to choose a proper measuement system and inter pret the output signal This is possible due to.
a. Usmg systematic errors
b Averaging the signal and its error
c Applying logic umit electronic modules
d Fourier tiansform
1.8 (2 point) Which answer describes modes for vibrating stings?
a The amplitude mereases with moreased harmonic number
b. The amplitude decreases with increased harmonic number
c Modes for vibrating stımgs are described by a phase shift
d. A frequency decieases with decteased harmonic number
1.9 (1 point) In a woodwind instruments (e.g a flute) the pitch/fiequency goes down in the following situation.
a When the wavelength is shorter (effective length of the instrument is shorter)
b When the wavelength is longer (effective length of the instrument is largei)
c. The effective length of a woodwind instiument does not influence the obtamed frequency
1.10 (1 point) If there is a very complex system model to be analysed and simulated, how this can be approached?
a. By designing a simulation of a vely complex (higher order) system model
b. A very complex system model should be simplified to lower order systems
c It is impossible to analyse a very complex system model
d None of the answers above are possible.
1.11 (2 point) Does the system output of the first-onder system give an immediate response to the input signal? Justify your answer (write down on a paper).
a Yes
b No
1.12 (1 point) What is the damping ratio for a non-oscillatory taansient response?
a $\zeta<1$
b $\zeta=1$
c $\zeta>1$
d $\zeta>0$
1.13 (2 points) Select coriect answeis describing statistical or systematic error
a Statistical erroı does not vary with repeated measurements
b. Statistical enor is the (unknown) difference between the retamed and true value
c Systematic crror varies with 1 epeated measurements
d Systematic error does not vary with repeated measurements
1.14 (1 pornt) Direct integiation of the Probability Density Function (PDF $\equiv \mathrm{p}(\mathrm{x})$) for a normal distribution covers a percentage of the area under $p(x)$ Which percentage representation is correct?
a. $68,26 \%$ for $\mathrm{z} 1=3$ and $95,45 \%$ for $\mathrm{z} 1=2$ and $99,73 \%$ for $\mathrm{z} 1=1$
b $95,45 \%$ for $\mathrm{z} 1=3$ and $68,26 \%$ for $\mathrm{zl}=2$ and $99,73 \%$ for $\mathrm{z} 1=1$
c. $68,26 \%$ for $\mathrm{z} 1=2$ and $95,45 \%$ for $\mathrm{z} 1=1$ and $99,73 \%$ for $\mathrm{z} 1=3$
d $68,26 \%$ for $\mathrm{z} 1=1$ and $95,45 \%$ for $\mathrm{z} 1=2$ and $99,73 \%$ for $\mathrm{z} 1=3$
1.15 (2 points) Regression analysis is described by the following.
a It establishes a functional relationship between dependent and independent variables
b It assumes that a variation found in a dependent (measured) variable follows a normal distribution about each fixed value of an independent variable
c. It assumes that a variation found in a dependent (measured) variable follows a Poisson distribution about each fixed value of an independent variable
d. None of the above is correct

2 (26 points) A common device used for measuring gas pressure is the pencil-type pressure gauge It consists of a piston attached to a spring inside a tube. Exposed to a gas with a certam pressure, the piston is pressed, compressing the spring, until the restormg force of the spring (together with the ambient air pressure) balances the pressue of the gas A calibrated scale is printed on a plastic ruler attached to the back of the piston, allowing the user to read of the pressure as it protrudes out of the tube. The pressure gauge is shown in figure 1

Figue 1. Schematic of a pencil-type pressure gauge The intake valve is exposed to the gas of which the pressure is to be measured This device is typically used for measumg air piessure in tyres

Assume the mass of the piston is not negligible and the system can be modeled by

$$
\begin{equation*}
m y(t)+d \dot{y}(t)+k y(t)=F(t), \tag{1}
\end{equation*}
$$

where $y(t)$ is the displacement of the piston and $F(t)$ is the force applied to the piston by the incoming gas The mass of the piston $m=0010 \mathrm{~kg}$, the damping constant $d=12 \mathrm{~kg} / \mathrm{s}$ and the spring constant $k=100 \mathrm{~N} / \mathrm{m}$ The surface area of the piston is $1 \mathrm{~cm}^{2}, 1 \mathrm{~atm}\left(=10^{5} \mathrm{~Pa}\right)$ of pressure applies a force of 10 N on $1 \mathrm{~cm}^{2}$ Assume the ambient pressure is 1 atm .
a) (2 points) What are practical advantages of having a strong spring (high k) and of having a weak spring (low k) m measuing various (constant) pressure values?
b) (5 pornts) Calculate the natural frequency of this system in $\mathrm{rad} / \mathrm{s}$ and the damping ratio Include unit calculations Which system order (zero-, first- or second order) these calculations relate to and why?
c) (9 points) Calculate and then sketch the predicted output signal $y(t)$ for an incommg pressure of 2 atm (step change from 1 atm to $2 \mathrm{~atm}, y(0)=0 \mathrm{~m}$).
d) (10 points) Is the piessure gauge suitable (dynamic error $\leq 5 \%$) for measurng a piston pressure force described by $F(t)=80+40 \sin (106 t) \mathrm{N}$, based on 1ts resonance frequency, magnitude ratio and phase shift? Explain/discuss why or why not.
(Assume the output can be digitized by some transducer, an oscillating analog scale would be difficult to read off manually after all)
3. (10 points) Experimental measuements are taken from a physical system that can be modeled as $y=a+10 \ln \left(x^{n}\right)$ The expermental data are (102, 40 32), (201, 33.65), (298, 29.52), (401, 2627), (501,2412), (597,2212)
a) (10 points) Find a and n using the method of least squares (Hint Transform the given model into a polynomial first)

4 (33 points) A pendulum oscillating in arr will undergo damping due to friction The amplitude, A, of oscillation will decrease exponentially as a function of timc. That is $A(t)=A_{0} \exp (-\zeta t)$, where ζ is the damping coefficient. A student measures a pendulum's oscillation amplitude over time and from the collected data (see table 1) determines that $A_{0}=1016 \mathrm{~mm}$ and $\zeta=0884$ Make use of figure 2 and figure 3 printed on page 8 and 9

$\mathbf{t}(\mathrm{s})$	$\mathbf{A}(\mathrm{mm})$
1	437
2	192
3	83
4	36
5	1.2
6	06
7	04
8	0.1

Table 1. Data collected of a damped pendulum's oscillation amplitude over time. There is an error of $\pm 0.1 \mathrm{~mm}$ associated with all values of A .
a) (12 pornts) Find the error in the fit, given the values for A_{0} and ζ Explain performed steps
b) (9 points) Using the enor found in part a), determine the uncertainty m the fit withm a 95% confidence interval (if unable to do part a), use $s_{y z}=05672$) Explain performed steps.
c) (12 points) Find χ^{2} and from this determme if the fit is suitable to the acceptance level of 95% If the fit is not suitable provide an explanation and suggest an improvement to the measurement.

Formula sheet and useful tables

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega}=\frac{1}{f} \\
& y(t)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n t)+B_{n} \sin (n t)\right) \\
& A_{0}=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} y(t) d t \\
& A_{n}=\frac{2}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} y(t) \cos (n \omega t) d t \\
& B_{n}=\frac{2}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} y(t) \sin (n \omega t) d t \\
& y(t)=K A+\left(y_{0}-K A\right) e^{\frac{-t}{\tau}} \\
& y(t)=C e^{\frac{-t}{\tau}}+\frac{K A}{\sqrt{1+(\omega \tau)^{2}}} \sin \left(\omega t-\tan ^{-1}(\omega \tau)\right) \\
& M(\omega)=\frac{1}{\left(\left[1-\left(\omega / \omega_{n}\right)^{2}\right]^{2}+\left[2 \zeta \omega / \omega_{n}\right]^{2}\right)^{1 / 2}} \\
& \omega_{R}=\omega_{n} \sqrt{1-2 \zeta^{2}} \\
& \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
& s_{\imath}^{2}=\frac{1}{N} \sum_{\imath=1}^{N}\left(x_{\imath}-\bar{x}\right)^{2} \\
& t=\frac{\bar{x}-x^{\prime}}{s_{x} / \sqrt{N}} \\
& z_{0}=\frac{\left|x_{2}-\bar{x}\right|}{s_{x}} \\
& \Delta y_{c l}=t_{\nu, P} \frac{s_{y x}}{\sqrt{N}} \\
& M(\omega)=\frac{1}{\sqrt{1+(\omega \tau)^{2}}} \\
& \Phi(\omega)=-\tan ^{-1}(\omega \tau) \\
& a=\frac{\Sigma x_{2} \Sigma x_{\imath} y_{2}-\Sigma x_{2}^{2} \Sigma y_{\imath}}{\left(\Sigma x_{\imath}\right)^{2}-N \Sigma x_{\imath}^{2}} \text { for } y=a+b x \\
& \frac{1}{\omega_{n}^{2}} \dot{y}+\frac{2 \zeta}{\omega_{n}} y+y=K F(t) \\
& \text { with } \omega_{n}=\sqrt{\frac{a_{0}}{a_{2}}}, \zeta=\frac{a_{1}}{2 \sqrt{a_{0} a_{2}}}, k=\frac{1}{a_{0}} \\
& b=\frac{\Sigma x_{\imath} \Sigma y_{\imath}-N \Sigma x_{\imath} y_{\imath}}{\left(\Sigma x_{\imath}\right)^{2}-N \Sigma x_{\imath}^{2}} \text { for } y=a+b x \\
& \Phi(\omega)=\tan ^{-1}\left(-\frac{2 \zeta \omega / \omega_{n}}{1-\left(\omega / \omega_{n}\right)^{2}}\right) \\
& \begin{array}{l}
\chi^{2}=\sum_{i=1}^{N}\left(\frac{y_{2}-y_{c}}{\Delta y_{2}}\right)^{2}\left(y_{2}-y_{c}\right)^{2} \\
\quad\left(1-2 P\left(z_{0}\right)\right)<\frac{1}{2 N}
\end{array} \\
& y(t)=K A-K A e^{-\zeta \omega_{n} t}\left[\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{n} t \sqrt{1-\zeta^{2}}\right)+\cos \left(\omega_{n} t \sqrt{1-\zeta^{2}}\right)\right]
\end{aligned}
$$

Table 4.6 Values for γ_{82}^{2}

ν	χ_{099}^{2}	χ_{0975}^{2}	χ_{095}^{2}	χ_{090}^{2}	χ_{0050}^{2}	χ_{005}^{2}	χ_{0025}^{2}	χ_{001}^{2}
1	0.000	0.000	0000	0.016	0455	3.84	5.02	6.63
2	0020	0051	0.103	0211	139	599	738	9.21
3	0.115	0.216	0352	0.584	2.37	781	9.35	11.3
4	0297	0484	0711	106	336	949	111	13.3
5	0.554	0.831	115	161	4.35	11.1	12.8	15.1
6	0872	124	164	220	535	126	144	16.8
7	1.24	1.69	217	2.83	6.35	14.1	16.0	18.5
8	165	218	273	3.49	734	155	17.5	201
9	2.09	270	3.33	4.17	8.34	169	19.0	21.7
10	256	325	394	4.78	934	183	20.5	23.2
11	305	3.82	4.57	5.58	10.3	197	21.9	24.7
12	3.57	440	523	6.30	11.3	21.0	23.3	262
13	411	5.01	5.89	704	123	224	247	27.7
14	4.66	5.63	6.57	7.79	13.3	23.7	26.1	29.1
15	523	626	726	8.55	143	250	27.5	30.6
16	5.81	6.91	7.96	9.31	15.3	26.3	28.8	32.0
17	641	7.56	8.67	10.1	163	27.6	302	33.4
18	7.01	8.23	9.39	10.9	17.3	28.9	31.5	34.8
19	7.63	8.91	101	11.7	18.3	30.1	32.9	36.2
20	826	9.59	10.9	12.4	193	314	342	37.6
30	15.0	16.8	185	20.6	29.3	43.8	47.0	50.9
60	375	405	43.2	46.5	59.3	791	83.3	88.4

Figure 2 Table of χ^{2} values at a given acceptance level and degrees of freedom Note that $\nu=N-(m+1)$.

ν				
ν	ξ_{90}	t_{90}	t_{99}	
1	1000	6314	12706	63657
2	0816	2920	4303	9.925
3	0765	2353	3182	5841
4	0.741	2132	2770	4604
5	0727	2015	2571	4032
6	0718	1.943	2.447	3.707
7	0711	1895	2365	3499
8	0706	1860	2306	3355
9	0703	1833	2262	3250
10	0700	1812	2228	3169
11	0697	1796	2.201	3106
12	0695	1782	2179	3055
13	0694	1771	2160	3012
14	0692	1761	2145	2977
15	0.691	1753	2131	2947
16	0690	1746	2120	2921
17	0.689	1740	2110	2898
18	0688	1734	2.101	2878
19	0688	1729	2093	2861
20	0.687	1725	2086	2845
21	0.686	1721	2080	2831
30	0.683	1697	2042	2750
40	0.681	1684	2021	2704
50	0680	1.679	2.010	2.679
60	0679	1671	2000	2660
∞	0.674	1645	1960	2576

Figure 3. Table 4.4. Two sided Student's t-distribution as a function of degrees of freedom

